Our Conversation Continues: Philotimo and the Future of Bridge Engineering

William N. Nickas, Editor-in-Chief

In the last issue of ASPIRE® (Winter 2020), we started a difficult conversation about how our industry can best move forward after a tragic event. In that issue’s editorial, Gregg Freeby of the American Segmental Bridge Institute and I shared our thoughts following the release of the final National Transportation Safety Board (NTSB) report on the 2018 Florida International University (FIU) pedestrian bridge collapse. In that same issue, Leon H. Grant, vice president of operations at Coreslab Structures (Conn.) Inc., also offered a perspective on how a bridge collapse more than a century ago inspired an oath of professionalism that every engineering student in Canada takes—and the profound influence that oath has had on his own career. Many of you have joined the conversation, and your comments have given me a lot to think about.

One person who wrote to me about the last issue of ASPIRE was a retired 87-year-old structural engineer who wants to know why the bridge construction community seems to have shifted away from traditional checks and balances. This commenter worries that we may no longer confidently assume that materials engineers collect and validate the data used by the construction inspectors; (b) project engineers verify the inspection findings; (c) oversight bridge engineers validate field requests from the owner’s project managers and contractors; (d) project and field staff are empowered to engage with the perspectives of others. During the 2020 Transportation Research Board (TRB) Construction of Bridges and Structures Committee meeting on January 13, 2020, Alan Fisher, chief engineer for Cianbro Construction Company, asked the room full of engineers how many had read the thoughtful statement by the NTSB vice chairman (dated October 28, 2019) about what went wrong—and why—in the FIU bridge collapse. Only four people of the 30-plus in attendance had read the letter, which could be a sign that we as a community may not be reeling with the implications of that event and others like it for our profession. The statement is republished in full in this issue (page 51). I encourage you to read it, reflect on it, and discuss it with your colleagues.

That final question reminds me of a concept I learned when being taught right from wrong in my youth. My Greek family often spoke of philotimo. A rough English translation might be “love of honor” or “friend of honor,” but neither phrase fully captures the meaning of the Greek word. In fact, I have been told philotimo doesn’t have an exact English counterpart. Trying to describe this “Greek word without a meaning,” behavioral expert John R. “Jack” Schafer, PhD, a professor in the Law Enforcement and Justice Administration Department of Western Illinois University wrote, “Philotimo encompasses the concepts of pride in self, pride in family, pride in community, and doing the right thing. Philotimo is an all-encompassing concept that gives meaning to life that stretches well beyond ourselves. Elder Paisios aptly defined philotimo as ‘that deep-seated awareness in the heart that motivates the good that a person does. A philotimo person is one who conceives and enacts eagerly those things good.’” To my mind, what the retired engineer expressed was a concern that professionals in our industry today might lack philotimo.

To move forward as a community and industry that exemplify the values of philotimo, we are going to need to grapple with the implications of mistakes we have made, share our points of view, and really engage with the perspectives of others. During the 2020 Transportation Research Board (TRB) Construction of Bridges and Structures Committee meeting on January 13, 2020, Alan Fisher, chief engineer for Cianbro Construction Company, asked the room full of engineers how many had read the thoughtful statement by the NTSB vice chairman (dated October 28, 2019) about what went wrong—and why—in the FIU bridge collapse. Only four people of the 30-plus in attendance had read the letter, which could be a sign that we as a community may not be reeling with the implications of that event and others like it for our profession. The statement is republished in full in this issue (page 51). I encourage you to read it, reflect on it, and discuss it with your colleagues.

Also on January 13, Steve DeWitt (formerly the North Carolina Department of Transportation construction engineer) moderated the TRB panel discussion on alternative delivery and contract risk sponsored by the TRB Standing Committee on Project Delivery Methods. This discussion suggested to me that the balance in public-private partnerships may
DISCUSSION

The Effects of Strand Debonding

This is a discussion of “The Effects of Strand Debonding” by Dr. Oguzhan Bayrak published in the Winter 2020 issue of ASPIRE magazine (pp. 52–53). The explanations given by Dr. Bayrak are clear and welcomed. We would like to bring attention to two items:

1. In the paragraph following Eq. (5.7.3.5-2), Dr. Bayrak explains that stirrups in excess of those required to correspond to \(V = (V_u/\phi_v) \) should not be used to artificially reduce the amount of longitudinal tie steel required. This is in accordance with the AASHTO LRFD specifications provision and should be followed. However, the equation given below the paragraph and described as the minimum value for the longitudinal tie force can be misleading and its use should be clarified. We recommend clarifying that the minimum requirement for longitudinal tie reinforcement should be the larger of Eq. (5.7.3.5-2) and the following equation given in the article:

\[
A_s f_{ys} + A_t f_y \geq \frac{0.5 V_u}{\phi_v} \cot \theta
\]

2. The discussion in the article, and also in the AASHTO LRFD specifications, indicates that debonded strands may not be used as part of the longitudinal tie reinforcement. We only partially agree with this statement. It is only valid when the debonded strands are not anchored after detensioning. Debonded strands can be anchored by embedding them into a cast-in-place diaphragm, which is a common detail in much of the United States for beams made continuous for live load. They can also be anchored by other means, such as using strand chucks and secondary end blocks. If debonded strands are anchored, it would be reasonable to assume that they contribute to the longitudinal tie resistance at the strength limit state.

Author’s response

The author wishes to thank the discussers for their thoughtful comments. The points raised by the discussers are addressed in the same order.

1. The unnumbered equation in the subject article was provided for the purposes of clarifying the lower bound for Equation (5.7.3.5-2). The \(V_r \) value used in this equation cannot be greater than \((V_u/\phi_v) \). Therefore, the interpretation of the discussers is correct: adding stirrups can only reduce the demand on the longitudinal tie up to a point. Put simply, the definition provided for \(V_r \) after Equation (5.7.3.5-1) in the AASHTO LRFD specifications reads “shear resistance provided by transverse reinforcement at the section under investigation as given by Eq. (5.7.3.4-4, except \(V_r \) shall not be taken as greater than \(V_u/\phi_v \), (kip)).” This limit placed on \(V_r \) should be taken into account when using Equation (5.7.3.5-2).

2. If positive anchorage is provided to debonded strands by extending them into diaphragms and bending them up or by using strand chucks, at the point where this positive anchorage is provided strand can be adequately developed or assumed to be “fixed.” Under additional loads, it is true that the “fixed” or “positively anchored” debonded strand will pick up some additional strain, and associated stress. This creates an interesting distribution of stress along the length of a debonded strand. Additional stresses experienced by the debonded portion of a strand anchored at its end due to additional gravity loads acting on the beam will add to a “zero stress state” and not the effective prestress at the service limit state. So, with this important subtlety acknowledged, the author agrees with the discussers’ point on this item. Finally, simply supported beams made continuous for live load creates a boundary condition that starts deviating from a simply supported beam end such as that depicted in Figure C5.7.3.5-1, where there is no moment reaction at the support.

Dr. Amgad Girgis, Micheal Asaad, and Dr. Maher Tadros

e.construct USA LLC

Omaha, Nebraska

Dr. Oguzhan Bayrak

University of Texas at Austin